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The constant C, and the near-wall damping function & in the eddy-viscosity relation 
of the k-s model are evaluated from direct numerical simulation (DNS) data for 
developed channel and boundary-layer flow, each at two Reynolds numbers. Various 
existing& model functions are compared with the DNS data, and a new function is 
fitted to the high-Reynolds-number channel flow data. The s-budget is computed for 
the fully developed channel flow. The relative magnitude of the terms in the eequation 
is analysed with the aid of scaling arguments, and the parameter governing this 
magnitude is established. Models for the sum of all source and sink terms in the E- 
equation are tested against the DNS data, and an improved model is proposed. 

1. Introduction 
The k-s model has become one of the most popular turbulence models used regularly 

in many calculations of flows of practical interest. In the past, k-s model calculations 
were mostly carried out in conjunction with wall functions bridging the viscosity- 
affected near-wall region. Recently, however, low-Reynolds-number (low-Re) versions 
of the k-s model are being used in which the near-wall region is resolved. These 
versions contain damping functions and extra terms in order to account for the 
observed near-wall effects, and, in most cases, these terms and functions have been 
made to depend on the viscosity. A wide variety of model versions has been proposed 
in the literature. The pre-1984 models were reviewed in Patel, Rodi & Scheuerer (1985). 
Since then, a number of newer proposals have emerged (see e.g. Shih & Mansour 1990). 

The extra terms and functions in low-Re k-s models have not been derived on the 
basis of data but on various modelling arguments, and they have only been subjected 
to indirect testing by calculating various flows with the models. The same is true for the 
entire s-equation, even the high Reynolds number (high-Re) version, which must be 
considered empirical. Direct numerical simulation (DNS) data are now available with 
which the individual model assumptions can be tested directly. The data can also be 
used as a basis for the development of improved models. The DNS data available are 
still for flows at fairly low Reynolds numbers, but they are suitable for examining the 
near-wall behaviour of models and for aiding the development of realistic models in 
this region. 

In the work reported here, two main issues were investigated with the aid of DNS 
data. The first one is the behaviour of the coefficient in the eddy-viscosity expression 
in k-s models, particularly near walls. The second issue is the model form of the e- 
equation. For high Reynolds numbers, where the energy-containing and dissipative 
motions are very different in scale, the exact eequation provides little if any guidance. 
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But in low-Reynolds-number regions near walls the situation is different because the 
scales of energy-containing motions and the scales of dissipative motions are the same 
(Launder 1986). In this case, the exact s-equation is useful for identifying and 
describing the various near-wall influences on B. The terms in the exact s-equation 
cannot be measured and therefore information on these terms can only be obtained 
from DNS data. The data used in this work were for developed channel flow (Kim, 
Moin & Moser 1987; J. Kim 1990, unpublished data) and for boundary layers in zero 
pressure gradient (Spalart 1988), each at two Reynolds numbers. The dissipation rate 
budget could only be computed for the developed channel flow case. For the lower 
Reynolds number (Re, = 180 based on friction velocity and channel half-width), 
Mansour, Kim & Moin (1988) have already provided the €-budget and tested some 
model approximations. Here, the s-budget is provided for Kim's (1990, unpublished 
data) new channel flow calculations at Re, = 395. Some of the more successful low-Re 
k-e model versions are tested against these data and new model proposals are made for 
the source/sink terms in the €-equation. 

2. Form of low Reynolds number k-e models 
The k-s model employs the eddy-viscosity concept, and for the various low-Re k-s 

models proposed so far the relations for determining the eddy viscosity v, can be 
written for two-dimensional shear layers in the following form : 

vt = CJp k2/d, 

E"=€-D. (4) 

The various models differ through the use of different functionsf,,f,,f2 and different 
terms D and E. In the eddy-viscosity relation (l), Cfi is a constant coefficient whilef, 
is a damping function reducing the eddy viscosity near the wall. Some models use as 
turbulence timescale k / s  and solve an equation for e itself (effectively putting D to 
zero), while other models use as timescale k/Z and solve an equation for the isotropic 
part of the dissipation B which, in contrast to s, goes to zero at the wall. For 
convenience, the near-wall behaviour of various parameters in the model is given in 
table 1.  The functionf, in the Bequation is usually effective only very close to the wall 
and is introduced to simulate the change in the decay rate of homogeneous turbulence 
as the Reynolds number Re,( = kz /vs )  becomes small. In the case where an equation for 
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B itself is solved, f, must, in addition, prevent the sink term involving s2/k becoming 
infinite at the wall (i.e. f, - y 2  as y + 0). The extra term E or alternatively the function 
f, were introduced to increase the s-production near the wall. A general discussion on 
the functions and extra terms in the various models proposed until 1984 can be found 
in Patel et al. (1985). Here, attention is focused on the damping functionf, and on the 
€-equation (3), and with the aid of DNS data the performance of five low-Re k-s 
models is examined. These are the models due to Launder & Sharma (1974, hereafter 
referred to as LS), Lam & Bremhorst (1981, hereafter referred to as LB) and Chien 
(1982, hereafter referred to as CH) rated best in the review article of Patel et al. (1985), 
and the more recently proposed models of Shih & Mansour (1990, hereafter referred 
to as SM) and Nagano & Tagawa (1990, hereafter referred to as NT). The constants 
and functions used in these five models are compiled in table 2. It should be 
mentioned that the SM model involves an additional pressure-diffusion term in the k- 
equation (2). 

All of the models considered are of the form such that whenf,,f,,f, are set to 1 ,  and 
terms D and E are set to zero, the standard high-Re version of the k-e model is 
recovered. 

3. C, constant and& function 
With C, = 0.09 chosen as used in standard k-s models, the functionf, in the eddy- 

viscosity relation (1) was determined from DNS data for both developed channel flow 
and boundary-layer flow at the two Reynolds numbers. The resulting f, distributions 
are plotted versus y+ = U, y / u  in figure 1. Away from the wall, the& distribution gives 
an indication of the value of C,, which should be constant = 1.0 when C, = 0.09). 
Indeed, figure l(a) shows, for the higher-Reynolds-number channel flow, that C, is 
roughly 0.09 over more than three quarters of the channel depth. It should be noted 
that this is in contrast to Rodi's (1975) evaluation of Laufer's (1954) experimental pipe- 
flow data which show C, to increase towards the pipe axis where the ratio of 
production to dissipation of turbulence energy, P/s ,  goes to zero. For the channel with 
Re, = 180, a higher C,, value results in the central part of the channel. In contrast, the 
C, value in the boundary layer, not too close to the wall, is only approximately 0.075. 
The behaviour of C, (or rather CJ,) can be explained via the distributions of u"/k 
and P / s  since (1) and (2) can be combined to yield 

4 c, = ( Z / k ) 2 / ( P / € ) .  (5)  
C,, = 0.09 (with f ,  = 1) corresponds to P / E  = - 1 (local equilibrium) and the often 

measured value of the structure parameter -u'v'/k = 0.3. Figures 2 and 3 show 
respectively, again for channel and boundary-layer flows, the distributions of the 
parameters -u"/k and P / E  determining CJ, according to relation (5). In the low-Re 
channel, the ratio P / B  has a value of only about 0.85 in the region where -m/k z 
0.3, which explains the higher CJ, value. In the high-Re channel, P / c  drops faster than 
-u"/k towards the channel centre so that ( n / k ) 2 / ( P / ~ )  z constant, which explains 
the - constant value of CJ, in the central portion of the channel. In the boundary layer, 
- u'u'/k approaches 0.3 only where the ratio P / s  is significantly larger than 1 ,  which 
leads to the relatively low value of CJ, w 0.075 over larger parts of the boundary 
layer. More towards the edge of the boundary layer, where P I E  tends to zero, C,f, 
increases. 

The foregoing has shown that the use of a constant value of C, = 0.09 can generally 
be only a rough approximation. When this value is chosen and when& is introduced 
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FIGURE 1.b-distribution ( f ,  = v,e/ /c  k* with C, = 0.09). (a) Channel flow at -, Re, = 

----. Re, = 395. (b) Boundary layer at -, Re, = 670; ----, Re, = 1416. 
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FIGURE 2. Distribution of the structure parameter -u"/k.  (a) Channel flow at -, Re, = 180; 

____  , Re, = 395. (b) Boundary layer at -, Re, = 670; ----, Re, = 1416. 
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FIGURE 3. Distribution of the ratio of production to dissipation of turbulent kinetic energy, PIE. (a) 
Channel flow at -, Re, = 180; ----, Re, = 395. (b) Boundary layer at -, Re, = 670; ----, 
Re, = 1416. 

Y+ Y+ 

to represent the damping of the eddy viscosity near the wall, then4 must take a value 
of 1 away from the wall, which of course cannot agree with all the DNS data. For the 
near-wall region (y' < 100) in channel flow, figure 4 compares the& functions due to 
LS, LB, CH, SM and NT with the DNS data for both Reynolds numbers, and figure 
5 provides a similar comparison for the higher-Reynolds-number boundary-layer flow. 
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FIGURE 4. Comparison of variousfr-model functions with DNS data for channel flow. (a) - DNS, Re, = 180; --, new correlation; ----, LS; ...*.., LB; --- NT* ---, SM. 
(c) - DNS, Re, = 180; -, DNS, Re, = 395; -, CH. 

DNS, Re, = 395; - , new correlation; ---- , LS; ...... , LB; ---, NT; -.-, SM. (b)  
9 ,  

Very near the wall, two sets of DNS data have to be distinguished: one using e itself 
in the eddy-viscosity relation (1) which causesf, to behave as l /y  since e is finite at the 
wall; the other is based on the use of the modified dissipation rate d which varies as y2 
very near the wall so thatf, goes to zero at the wall as y. The LS, CH and SM models 
use d + e in (1) so that their 4 fmctions should and do go to zero at the wall.? 
However, the CH function can be seen to rise and approach the value of unity far too 
slowly, while the LS function initially rises far too quickly but then also has a rather 
slow approach to the value of 1. That the& function due to LS never rises beyond 0.8 
for the low-Re channel case is due to the fact that the argument of thef, function, Re,, 

t The4 function due to CH had to be presented on a different graph because CH uses a different 
D and hence a different definition of C, resulting also in different DNS data curves. 
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FIGURE 5. Comparison of various &-model functions with DNS data for boundary layer (Re, = 

1416). -, DNS; -, new correlation; ---- LS; * - . * * . ,  LB; ---, NT; -.-, SM. 

rises to a maximum at y+ e 20 and then falls again. The SM function also approaches 
the value of 1 too slowly. The models of LB and NT use E and hencef, should increase 
very close to the wall; thef, function due to NT does so and, overall, fits the high-Re 
channel DNS data quite well, being only slightly higher in the region 10 < y+ < 40. On 
the other hand, the LB& function goes to zero at the wall, which causes vt to behave 
as y4 instead of 9. The following increase in& is simulated fairly well by the LB 
function, but then it approaches unity somewhat too slowly. The fairly good agreement 
for the boundary layer (figure 5 )  is somewhat misleading because the far-wall value of 
the data is lower than 1 .  There seems to be some influence of the Reynolds number on 
the& distribution in an& us. y+ plot, but in view of the differences between various 
wall-bounded flows, the inclusion of such effects in a single model is not warranted. 
Hence, a y+-dependent & function based on the data for the high-Re channel flow 
appears as a reasonable compromise, and by curve-fitting, the followingf, function has 
been determined : 

This relation, which is also included in figures 4 and 5,  is only suitable for attached 
flows, while in separated flows the argument y+ should be replaced by Re, = k iy / v .  It 
should be noted that the&-function (6)  has the correct near-wall behaviour - y) in 
connection with the use of d in (1). 

Durbin (1990) suggested the use of the normal fluctuations (v’”); as velocity scale in 
the eddy-viscosity relation (1) instead of k; and argued that a damping function would 
not be needed in this case. His eddy-viscosity relation reads 

& = 1 - exp (- O.O002y+ - 0.00065y+2). (6) 

- 
V ,  = CPv” T, 

with the time-scale T determined from 

T =  m a x t ,  6(:f). 

(7) 

It has already been shown by Launder (1986) that the near-wall damping expressed 
through the function& in (1) is due not so much to viscous effects but to the damping 
of the normal fluctuations u’ by the pressure-reflection mechanism and thatf, therefore 
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v 

0' 
0.1- 

correlates very well with P / k .  Hence it is interesting to test Durbin's model proposal 
(7) with the aid of DNS data. Figure 6 shows C,, in relation (7) determined from the 
channel-flow data at two Reynolds numbers. It can be seen that C, is indeed fairly 
constant down to y+ M 10. The C, value depends somewhat on the Reynolds number 
as noted already in the context of C, appearing in (1). Very close to the wall, where the 
timescale T according to (8) adopts a finite value, C,, behaves as l/y. The use of a 
constant C)' leads to vt cc y4, and the correct v,-distribution near the wall (v, a y 3 )  can 
only be obtained by introduction of a damping function in this region. 

4. The 6-budget 

be written in tensor form as 
The exact equation for c( = vu;,, u;,,) derived from the Navier-Stokes equations can 

where the individual terms on the right-hand side are defined and identified as 

Pi = - v 2  u;,, &k Mixed production, 
P," = - u2 u;, ui, S,, 
P," = - v2 u; ui, Ui, km Gradient production, 

T,  = - V(U; u : , ~  ul, ,), ]c Turbulent transport, 
2 

17, = - u-(Plrn u ; , , ) , ~  Pressure transport, 
P 

Dc = ", kk Viscous diffusion, 
Dissipation. 

and S. .  = i (U i , j+  U,,,) is the mean strain rate. For developed channel flow, the left- 
hand zde is zero so that the terms on the right-hand side should balance each other. 
The near-wall behaviour of the individual terms is given in table 1 (b). Mansour et al. 

Production by mean velocity gradient, 

= - v 2  u ; , ~  ui, u;, Turbulent production, 

Y = v 2 2  u;, km u;, ,, 
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FIGURE I .  e-budget for channel flow at Re, = 395. -, Pi; -, P,"; ..-..., p,"; 

, D,;  w, Y; x x x x ,  sum of all terms. -, p4. __- T .  _ _ _ _  n. -.- 
6 5  6 )  9 E) 

(1988) have calculated the e-budget from the DNS data for the low-Re channel flow. 
The ebudget evaluated from the data for the channel with Re, = 395 is given in figure 
7 .  All terms have been made dimensionless with q / v 2 .  The imbalance in the budget 
(crosses) is also given; this is a measure of the errors in the budget terms due to 
discretization and limited sample size. As can be seen, the imbalance is fairly small 
relative to the terms in the budget, except very close to the wall. This imbalance is small 
relative to the imbalance between the production and dissipation for y+ > 8, so that the 
s-budget determined from the DNS data can be considered accurate for y+ > 8. Taking 
the Chebychev transform of all the terms in the ebudget reveals that the major source 
of error is from computing the dissipation rate (Y) of e which is under-resolved near 
the wall. However, it should be emphasized here that E itself and also E" determined from 
the DNS data are accurate down to the wall. 

As was to be expected from the order-of-magnitude analysis of Tennekes & Lumley 
(1972), the turbulent production rate P: due to vortex stretching and the viscous 
destruction Y dominate the balance equation in the high-Reynolds-number region 
away from the wall. However, near the wall, the production terms P,' and P," become 
equally important, and at the wall itself viscous destruction is balanced by viscous 
diffusion and pressure transport. The smaller terms, e, T, and n,, are shown in figure 
8 on an expanded scale. The imbalance can be seen to be small even compared with 
these small terms for y+ > 8 ,  and the pressure diffusion 17, can be seen to be negligible 
everywhere. On the other hand, the relatively small production term P," is of the same 
order of magnitude as the turbulent diffusion T,, 

and Y increase with increasing Reynolds number, but their difference 
remains independent of Reynolds number (once this is sufficiently high); the latter is 
true also for the rate of change and transport terms, of which in the channel flow 
situation only the diffusion term is non-zero. According to Tennekes & Lumley (1972), 
the terms Pz and P," relative to the difference (c- Y) are of order l /Re; .  Figure 9 
shows the sum P,' + P," and the difference - Y for channel flow at both Reynolds 
numbers investigated. With the non-dimensionalization chosen, there is no noticeable 

The terms 
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FIGURE 9. Distribution of P: + e, - Y and sum of all source and sink terms in channel flow. -, 
P:+P:, Re,=395; ---..., e - Y ,  Re,=395; ----, P,'+P:+Pt+e-Y, Re,=395; -, 
P:+e, Re, = 180; -, c- Y, Re, = 180; -, P:+P:+c+c- Y, Re, = 180. 

Reynolds-number influence on either group of terms away from the wall. Near the 
wall, both groups increase somewhat with the Reynolds number. Also, it is clear that 
the destruction term Y adjusts to the increase of eproduction due to Pi and P: near 
the wall and in fact tends to over-react somewhat. The sum of all source and sink terms 
(i.e. P i + P : + P : + e -  Y) is also included in figure 9. This sum, which is little 
influenced by the Reynolds number, is very small compared with the actual terms in 
the €-equation. It is this sum which, in general, balances the rate of change, convective 
and diffusive transport terms in the s-equation and therefore governs the magnitude of 
E .  Hence it is only this sum that really matters and has to be modelled. Because of the 
small magnitude of the net source compared with the original terms in the €-equation, 

I 4 I I I 
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the usefulness of the exact €-equation has sometimes been considered doubtful. 
However, even though this source is small it is still finite and balances the rate of 
change and transport of 8. At high Reynolds numbers, where an inertial subrange 
exists, the source/sink terms are given by the integral over the low-wavenumber part 
of the spectrum of the spectral transfer function multiplied by the wavenumber squared 
(see e.g. Rodi 1971). This shows that s is governed by the larger-scale turbulent motions 
which are independent of Reynolds number. 

5. Scaling arguments 
Tennekes & Lumley (1972) made an order-of-magnitude analysis of the terms in the 

vorticity-fluctuation equation. The order of magnitude was expressed in terms of the 
velocity scale u, the macro-lengthscale Z and the Taylor microscale A. They found that 
the relative magnitude of the individual terms and hence also the importance of the 
production terms P,' and P," depends on the Reynolds number Re, = ul/v. In a study 
of homogeneous shear flow, Bardina (1988) argued that the Reynolds number is not 
the only parameter determining the relative importance of the P,' and P," production 
terms but that the mean shear number S, = Sk/s  plays also a role (S  is the mean shear 
rate). His conclusions are of interest here, but his derivation seems not to be quite 
correct and also does not allow direct insight into the Re-dependence of the terms in 
the s-equation. Hence, scaling arguments are elaborated here once more. 

Because ~ of the close relation ~ between the dissipation rate s and the fluctuating 
vorticity wiwi (with E = voiw: in homogeneous flows) the scaling arguments of 
Tennekes & Lumley can be applied directly to the s-equation. When the strain rate in 
the terms P,' and P: is not expressed as u/Z but is retained as a strain-rate parameter 
S (which is channel flow is equal to the shear rate aU/ay) and with E cc vu2/A2 cc u3/Z and 
the velocity scale u = d, the order of magnitude of the various terms follows as 

D 
Dt e-r,--E,T, = 0 

Since l /h  cc Re! cc Rei, the terms Pz and P," decrease as Re, increases, while the terms 
and Y increase. The difference of the latter terms, P: - Y, and also the rate of change 

and transport terms are independent of Reynolds number, as mentioned already. The 
magnitude of the production terms P,' and P," relative to the main terms in the model 
€-equation (difference - Y and transport terms) can now be established as : 

The relative order of magnitude of P,' and P," is therefore determined by the parameter 

which indeed involves the parameter S, = Sk/s .  Relation (14) shows that the 
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Y+ 
FIGURE 10. Distribution of parameters R and R, in channel flow at Re, = 395. 

- R. _ _ _ _  R 
9 ,  ' P' 

parameter R is the ratio of the timescale of the dissipative motion to the timescale of 
the mean strain field. Bardina (1988) also arrived at this parameter, but his derivation 
concerns the ratio of order of magnitudes of terms P,' and P," to e and Y, while here 
it represents the magnitude relative to the difference of the latter terms. The scaling 
arguments show that the production terms P,' and P," are important when the 
parameter R > 1. Bardina (1988) examined two sets of homogeneous shear-flow data 
obtained by direct numerical simulations. For low-shear cases with typically R < 0.3 
the terms P,' and P," were found small compared with P," while for the case with high 
shear (and low Reynolds number) characterized by R = 6-15, the terms P,' and P," were 
found to be larger than e. 

The distribution of the parameter R in the channel flow with Re, = 395 is shown in 
figure 10. It can be seen that in the bulk of the channel flow the parameter is 
substantially below 1 (z 0.25). In the near-wall region, where the terms P,' and P," 
become important, the parameter R increases strongly and reaches a maximum value 
of 2.4. 

The above scaling arguments followed the assumption of Tennekes & Lumley (1972) 
that the anisotropic part of the correlation vu;, u;, ,is proportional to (vulh) ( u / l )  K 
s/Rei. When u/ l  is retained as strain-rate parameter S (Mansour 1991), this correlation 
is proportional to (vulh) S cc (€/Re!) (Sk/E). The production terms P,' and P," are then 
of order 

and the magnitude of these terms relative to the difference e- Y is 

According to this scaling argument, the relative magnitude of P,' and P," would 
therefore be determined by the parameter 
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With the shear stress -m cc ( k 2 / e )  S, in the context of an eddy-viscosity model, and 
the production P = - n S  cc ( k2 /e )  S2 this parameter can be rewritten as 

__ 
P l k  -u'u' ,=- R. PI€  - R, = - 

0.3Rei- O.3(e/v)z 0.3k 

The alternative parameter R, can be seen to be proportional to the parameter R 
multiplied by the structure parameter u" /k  and the factor 0.3 has been introduced into 
the definition of R, in order to make R, and R the same when the structure parameter 
assumes a value of 0.3. The parameter R, also represents a timescale ratio, namely the 
ratio of the timescale of the dissipating motion to the timescale P l k  involving the 
production of turbulence. The variation of the parameter R, in the channel flow is also 
shown in figure 10. It can be seen to rise less steeply near the wall, which makes it more 
suited as modelling parameter as will be discussed in the next section. 

6. Modelling the terms in the €-equation 
In order to turn the exact eequation into an equation that can be used in a 

turbulence model, the source and sink terms as well as the turbulent diffusion terms 
need to be modelled. As mentioned already, the sum of the source and sink terms is 
much smaller than the actual terms but it is still finite and in channel flow it is balanced 
by the equally small diffusion term. Models for the source and sink terms are 
considered first, and the starting point is the generally used basic model for high- 
Reynolds-number (or low-R) situations where only c- Y is left. This difference is 
modelled as (see e.g. Launder, Reece & Rodi 1975) 

where P is the production of turbulent energy, that is the energy input into the low- 
wavenumber part of the spectrum. The model relation (19) is compared in figure 11 
with P,' + P," + - Y and in figure 14 with the sum of all source and sink terms (Cc2 is 
multiplied by the damping function f, of SM according to table 2, butf, is effective only 
for y+ < 12). Depending somewhat on the constants C,, and C,, used, the basic model 
can be seen to simulate fairly well the sum of source and sink terms away from the wall, 
where Pt,  P," and P," are unimportant. The question now is how to bring in the influence 
of the production terms P,', P," and P," and the consequential increase in the destruction 
term Y. The terms P,' and P," involving the mean strain rate (first derivatives of 
velocities) are treated separately from the term P," involving second derivatives. 

6.1. Modelling the eflect of P,' and P," 
One possibility would be to add modelled terms of P,' and P,". P,' can be expressed as 
-eij Ut,*,  where eI, is the dissipation rate of the Reynolds-stress component a; this 
term is therefore closely related to (e2 /k)  (PIE) and hence effectively increases the value 
of the coefficient C,, in (19), depending on PIS. With such modelling of P:, and 
similarly of P,", the sink term would have to be increased drastically in order to account 
for the adjustment of Y due to the extra production by P,' and P,". As an alternative, 
the suggestion is therefore made here that the influence of the combined effect of P,' and 
P," and Y be modelled, which increases somewhat the sink term in the eequation. Both 
timescale ratios R and R, were tested as parameters to account for this effect, and the 
parameter R was found not to correlate too well. The close relation of P,' to the ratio 
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FIGURE 1 1. New model for source/sink terms P: + P," + - Y compared with DNS data (Re, = 395). 

-, DNS data; -, new model; -...-., high-Re model; x x x , sum of all terms. 

of production to dissipation, P/s ,  suggests that this ratio is an important parameter, 
and, in fact, the parameter R, involving PIE was found to be suitable. 

The combined effect of P:, P," and the increase in Yis accounted for in the new model 
by multiplying the coefficient C,, in the sink term of (19) by the following function: 

f, = exp (2R3. (20) 
This was obtained by fitting the exponential function to the DNS data of figure 11. 

The effect of this function can be seen in figure 11 ; it is restricted to the near-wall region 
of y +  < 30. The new model simulates quite well the distribution of the source and sink 
terms P,"+ P , " + e -  Y down to y+ z 8, below which the DNS results are not very 
reliable anyway. It is also in this region where the sink term in (19) has to be multiplied 
by another functionf, which approaches the wall as y 2 .  Note that LB'sf, function (see 
table 2) is of this type, and that Hanjalid & Launder (1976) and SM achieved this effect 
by replacing 2 in (19) by €2. Since the DNS-based-s-budget terms are not accurate very 
near the wall, they,-function could not be determined directly from the DNS data and 
no proposal can be made here (we used the proposal of SM in figures 11 and 14a). 
Michelassi, Rodi & Zhu (1992) proposed an &-function that works in calculations 
with the present model for the high-Re channel flow. They also found that the proposal 
where the same f, is used as in SM (see table 2) was not entirely satisfactory in 
conjunction with the present model. 

6.2. Bardina's model 
Bardina (1 988) suggested that the influence of high shear characterized by high values 
of the parameter R could be accounted for by adding an extra term to the c-equation 
which involves the mean rotation 0. This model suggestion is based on his previous 
work on turbulence under the influence of rotation (Bardina, Ferziger & Reynolds 
1983). The extra term is 

In his study on homogeneous shear layers, Bardina (1988) found that with this extra 
term (with constants C,, = 0.015 and C,, = 0.15) the sum of the source and sink terms 
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FIGURE 12. Bardina's model for source/sink terms P,'+ P , ' + e -  Y compared with DNS data 
(Re, = 395). -, DNS data; -, Bardina's model; ......, high-Re model; x x x , sum of 
all terms. 

(Pz + P," + - y> are modelled quite well for the high shear case also ; without the extra 
term, only the low-shear situation was simulated well. It should be added here that the 
high-shear case was at a rather low Reynolds number. Bardina's model, with his 
constants, was applied to the channel flow, and the results are shown in figure 12. The 
model can be seen to have the correct trend, namely to reduce the sum of source and 
sink terms in the €-equation near the wall, but the reduction is somewhat excessive. 
Hence there appears to be too much sensitivity to the mean rotation, which in the 
present case is the velocity gradient U, ,. Perhaps this oversensitivity could be remedied 
by multiplying the extra term (21), which does not include any Reynolds-number 
dependence, by a suitable function of the turbulent Reynolds number Re,. 

6.3. Modelling of P," 
The production term P," involving second derivatives of the mean velocity is small 
compared with the other source and sink terms, but it is comparable with their sum and 
also with the turbulent diffusion term (see figure 8). Hence it is important to represent 
realistically this term in a model also. HanjaliC & Launder (1976) used a generalized 
gradient approximation for the fluctuating velocity gradients u ; , ~  appearing in the 
turbulence correlation in the P," term and expressed these gradients in terms of second 
derivatives of the mean velocity. They arrived at a model expression which, for the 
special case of channel flow, reads 

With replaced by k and V ,  cc k 2 / q  the model used by LS results: 

q = 2VV,(U,,,)2. 

The P," distribution resulting from this model is compared in figure 13 with the DNS 
data. The model can be seen to have two problems. One is that the size of P," is 
significantly overpredicted; this could be fixed by using a different constant. The other 
more fundamental problem is that the LS model predicts P," to be always positive while 
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FIGURE 13. Model for e-production compared with DNS data (Re, = 395). -, DNS 

data; -, new model; ......, LS model. 
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the DNS data show that P," becomes negative near the wall. It can be shown from a 
series expansion of the - fluctuating velocities u' and 0' as given in Mansour et al. (1988) 
that the correlation v'u;,, which is the only contribution to P," in channel flow, should 
behave as (m),, near the wall, i.e. as y2, and should be negative. This confirms the 
behaviour resulting from the DNS data. In fact, the Chebychev transform of P," reveals 
that the term is well resolved and that the only source of error will be from the number 
of samples used. Considering that this term is important close to the wall where the 
turbulent eddys are small, that each flow field yields two planes with 256 x 192 samples, 
and that we averaged over 19 fields, we consider that the distribution given in figure 
13 is converged. 

Because of the fundamental problems with the LS model for P,", an improved model 
was developed. To this end, an exact equation for the correlation u; u ; , ~  appearing in 
the P," definition was derived by manipulating the Navier-Stokes equations (see 
Appendix A). For modelling purposes, it was then assumed that the correlation is 
related to the source terms in the exact - equation involving mean velocity derivatives. 
For channel flow only the correlation duly  is of interest, and the main source terms in 
the equation for this correlation are 

- - 

- - I2  u*yy-+uu12,y U# (24) 
- Multiplying these terms by a timescale k/E for dimensional reasons and assuming 
u ' ~  cc k and k2/E a vt in the context of a k-t. eddy-viscosity model, and allowing for 
different multiplying constants for each of the terms in (24), the following model is 
obtained for shear-layer flows : 

The first term can be seen to be the model of LS which is always positive. The second 
term is negative near the wall as desired and turns positive further away from the wall. 
This term also has the correct near-wall behaviour, namely it approaches the wall as 
y2. Adjusting the constants q and Ci to best fit the DNS data (q = 0.5, = 0.006) 
the curve given in figure 13 follows. The fit can be seen to be very good. 
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FIGURE 14. Models for all source/sink terms in the €-equation compared with DNS data for channel 
flow (Re7 = 395): -o-o-o-, DNS data; -, model. (a) New model. (b)  CH model; ......, CH 
model with E = 0. (c) LS model; ......, LS model with E = 0. (d )  LB model; ......, LB model with 
f, = 1. (e) SM model; .-...., SM model with E = 0. (f) NT model; ......, NT model with f, = 0. 

6.4. Model performance for  sum of all sourcelsink terms 
The model for P," is now combined with the previously discussed model for the other 

source and sink terms, including the R, function (20). The performance of the resulting 
model for the sum of all source and sink terms is shown in figure 14(a). The agreement 
between the model prediction and the DNS data is good down to y' z 8, below which 
the DNS data are not so reliable anyway. It should be mentioned here once more that 
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in this region the sink term in (19) needs to be multiplied by a damping functionf, 
which could not be determined from the DNS data. 

It is of interest to see how this performance compares with that of the five selected 
existing models: CH, LS, LB, SM and NT. Hence, in figure 14(&f) the models for the 
sum of all source and sink terms in the s-equations due to CH, LS, LB, SM and NT 
are compared with the DNS data. For y + 3 40, all models behave basically the same, 
because here the extra terms E and functionsf, and f, are not effective. In the range 
20 < y+ < 40, the CH model is superior because it uses different constants C,, and C,, 
than the other models (see table 2), which seem to be more suitable in channel flow. 
However, these constants may not be so suitable for other flows, e.g. free shear layers, 
for which the constants C,, and C,, used in the other models were optimized. Even 
below y+ = 20, the CH model is quite reasonable, but it is not as accurate as the new 
model, the results for which are shown in figure 14(a). The E-term in the CH model 
is effective only below y+ M 5 which shows that the basic model of (19) without an extra 
E-term or f ,  andf, functions is quite reasonable, especially when suitable C,, and C,, 
constants are chosen. Figure 14(c) shows that the LS model predicts far too high values 
of the source/sink terms near the wall, which is due to the E-term in their model E- 

equation representing the P,3-production (see also figure 13). The SM model which used 
the same E-term formulation but a factor of 2 smaller than LS, still overpredicts the 
sourcelsink terms. Overall, the model behaviour is better without this term in both 
cases. Similarly, thef,-function in the LB model which increases the production of E has 
the wrong effect becausef, assumes very large values near the wall. Again, the model 
behaviour is better without this function. Finally, the f,-function in the NT model can 
also be seen to lead to excessive values of the source/sink term near the wall. 

6.5. Diflusion model 
Finally, the diffusion model generally used in the s-equation is tested against the DNS 
data in figure 15. In the channel flow considered, the diffusion model reads 

- .-*-a -0 -- k- + 9 
+ o * * L  - u y  

w “.o#” 
t #  LU 

-0.0025 - 

1 

and the adjustable constant a,, is normally taken as 1.3. Figure 15 shows that this 
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model simulates the distribution of the diffusion term fairly well, even though the 
accuracy is not so good near the wall. 

7. Conclusions 
From the evaluation of DNS data for channel and boundary-layer flow it was found 

that away from the wall the coefficient Cfi depends on the type of flow and on the 
Reynolds number and varies in the bulk of the flows in the range 0.07 to 0.12. 
Considering only regions where the structure parameter u"/k is approximately 
constant, there is a clear dependence of C, on PIE as given by relation (5) .  A fixed value 
of C, = 0.09 is therefore not very accurate for all situations and a damping function 
f, designed to recover this value away from the wall cannot be in good agreement with 
all DNS data examined. Nevertheless, some general conclusions can be drawn on 
existing model functions: theJ;, function of Chien (CH) rises much too slowly, the 
function due to Launder & Sharma (LS) increases far too fast with distance from the 
wall, the functions due to Lam & Bremhorst (LB) and Shih & Mansour (SM) perform 
well, but approach unity too slowly, while the function of Nagano & Tagawa (NT) fits 
the high-Re channel data fairly well. An even better fit is achieved in this paper with 
a new function of the dimensionless wall distance y+. A damping function was found 
unnecessary except very close to the wall ( y+ < 10) when ( d 2 ) x  is used as velocity scale 
instead of ki in the eddy-viscosity relation, as suggested by Durbin (1990). 

The e-budget was determined from Kim (1990, unpublished data) for channel 
flow at Re, = 395. This was found reliable down to a wall distance of y+ M 8, 
as the calculated imbalance term is very small for y+ > 8. As expected, the main terms 
in the e-budget are the vortex-stretching-production term and the viscous destruction 
term Y, but near the wall the production terms Pz and P," involving the mean strain rate 
are of similar magnitude. These production terms were found to cause the viscous 
destruction term to increase near the wall so that the sum of all source and sink terms 
is small compared with the main individual source and sink terms over the whole 
channel depth. The turbulent diffusion and the P: term involving second derivatives of 
the mean velocity are of the same small magnitude. Through scaling considerations it 
was shown that the difference of the main source/sink terms, - Y, and the transport 
terms (here only turbulent diffusion) are independent of Reynolds number and also 
that the ratio of Pt and P: to these terms is given by a parameter R involving the strain 
rate and the Reynolds number Re,. This parameter represents the ratio of the timescale 
of the dissipating motion to the timescale of the mean strain field. 

A new model was proposed and tested against the DNS channel data which 
simulates the net effect of the production terms Pz and P," and the consequential 
increase in the destruction term Y. In this new model, the sink term in the e-equation 
is increased slightly near the wall through a parameter R, involving the ratio of 
production to dissipation, P / e ,  and the turbulent Reynolds number Re,. A new model 
for the source term P," was also derived, based on the production terms in the exact 
equation for the turbulence correlation appearing in P,". Altogether, the new models 
simulate the sum of all source and sink terms in the channel flow very well down to 
y+ M 8. Judging from the comparison with the DNS data, the new model is better than 
the existing models investigated. The CH model is not as accurate near the wall, but 
it is still quite reasonable, while the LS, LB, SM and NT models produce too large 
source terms near the wall. The new model proposals comprising a newf;, function and 
new suggestions for the source/sink terms in the e-equation need to be complemented 
by a damping functionf, multiplying the sink term in the model €-equation very near 
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the wall ( y+ < 5 )  before they can be used in actual flow calculations. This was done by 
Michelassi et al. (1992) who used the model to calculate the channel and boundary- 
layer flows at the same Reynolds numbers as the DNS data used in the present paper. 
With a slightly re-optimized form they obtained good agreement with the DNS data, 
for the first time for the €-distribution also. The new model should now be tested for 
other flows. 

The authors are grateful to Dr J. Kim for providing the unpublished direct 
simulation data for the channel flow at Re, = 395. The first author (W.R.) 
acknowledges the generous support of the Center for Turbulence Research. 

Appendix A. Modelling the u; ui,, correlation 
An exact equation for the u; u ; , ~  correlation appearing in the P,” term can be derived 

by differentiating the momentum equation for the fluctuating component ui with 
respect to xi, multiplying this equation by ui and averaging. The result is as follows: 

( & U ; , j ) , t - U ; , j U ; , t +  Ut(u;ui,j),t- ul4,j&,l 

It is now assumed that the terms involving gradients of the mean velocity act to 
produce the correlation u; u;,,. When put to the right-hand side of the equation, these 
terms read 

(A 2) 
For developed channel flow, the only correlation in P,“ is v’u:,, and the velocity gradient 
production terms for this correlation are 

- 
- 4 4,1 U2.j - u; u; ui,tj - uk 4 , j  4 1 .  

- 

The correlation appearing in the first term can be written as 
- -  
v’u:x = (U/V‘), - 2q. (A 4) 

In developed channel flow, (m), is zero and is neglected to a first approximation. 
The correlation z&an be written as +(v’2), !. The velocity-gradient production terms 
of the correlation v ’ d ,  therefore are approximately 
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